જો સામાન્ય ગુણોત્તર $r (r>1)$ વાળી એક ગુણોત્તર શ્રેણી ($G.P.$) ના ત્રણ ક્રમિક પદો , એ એક ત્રિકોણની ત્રણ બાજુઓની લંબાઈઓ છે અને $[\mathrm{r}]$ એ $\mathrm{r}$ કે તેથી નાનો હોય તેવો મહત્તમ પૂણાંક દર્શાવે છે, તો $3[\mathrm{r}]+[-\mathrm{r}]=$___________. 

  • [JEE MAIN 2024]
  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

જો સમગુણોતર શ્રેણીનું પાંચમું પદ $2$ હોય તો શ્રેણીના નવ પદોનો ગુણાકાર મેળવો. .     

  • [AIEEE 2002]

સમગુણોત્તર શ્રેણીનાં કેટલાંક પદોનો સરવાળો $315$ છે. તેનું પ્રથમ પદ અને સામાન્ય ગુણોત્તર અનુક્રમે $5$ અને $2$ છે. તેનું છેલ્લું પદ અને પદોની સંખ્યા શોધો

જેના સામાન્ય ગુણોત્તર $3$ હોય તેવી $n$ પદવાળી સમગુણોત્તર શ્રેણીનાં $n$ પદનો સરવાળો $364$ હોય અને તેનું છેલ્લું પદ $243$ હોય, તો $n = ……$

સમગુણોત્તર શ્રેણીનાં ત્રણ ક્રમિક પદનો ગુણાકાર $216$ છે અને તેનાં બે-બે પદોના ગુણાકારનો સરવાળો $156$ છે, તો આ પદ.... હશે.

જો $x, y, z$ સમગુણોત્તર શ્રેણીમાં અને $a^x = b^y = c^z$ હોય, તો . . . . . .