यदि वृत्त ${x^2} + {y^2} + 6x + 6y = 2$ के बिन्दु $P$ पर स्पर्श रेखा, सरल रेखा $5x - 2y + 6 = 0$ को $y$ - अक्ष पर बिन्दु $Q$ पर मिलती है, तो $PQ$ की लम्बाई है

  • [IIT 2002]
  • A

    $4$

  • B

    $2\sqrt 5 $

  • C

    $5$

  • D

    $3\sqrt 5 $

Similar Questions

 यदि $5x - 12y + 10 = 0$ तथा $12y - 5x + 16 = 0$ किसी वृत्त की स्पर्शियों के समीकरण हैं, तब इस वृत्त की त्रिज्या है

उस बिन्दु के निर्देशांक जिससे वृत्तों ${x^2} + {y^2} = 1$, ${x^2} + {y^2} + 8x + 15 = 0$ व ${x^2} + {y^2} + 10y + 24 = 0$ पर खींची गयी स्पर्श रेखाओं की लम्बाइयाँ बराबर हैं, है

बिन्दु $(-1,2)$ से वृत्त ${x^2} + {y^2} + 2x - 4y + 4 = 0$ पर डाली जाने वाली स्पर्श रेखाओं की संख्या है

वृत्त ${x^2} + {y^2} = 50$ के उन बिन्दुओं पर, जहाँ रेखा $x + 7 = 0$ इसको काटती है, स्पर्श रेखाओं के समीकरण हैं

बाह्य बिन्दु से एक वृत्त पर खींची गयी दो स्पर्श रेखायें हमेशा होती हैं