उस बिन्दु के निर्देशांक जिससे वृत्तों ${x^2} + {y^2} = 1$, ${x^2} + {y^2} + 8x + 15 = 0$ व ${x^2} + {y^2} + 10y + 24 = 0$ पर खींची गयी स्पर्श रेखाओं की लम्बाइयाँ बराबर हैं, है

  • A

    $\left( {2,\frac{5}{2}} \right)$

  • B

    $\left( { - 2, - \frac{5}{2}} \right)$

  • C

    $\left( { - 2,\frac{5}{2}} \right)$

  • D

    $\left( {2, - \frac{5}{2}} \right)$

Similar Questions

वृत्त ${x^2} + {y^2} + 4x - 4y + 4 = 0$ पर उस रेखा का समीकरण जो धनात्मक अक्षों से बराबर अन्त:खण्ड काटती है, होगा

वृत्त, जिसका केन्द्र $(2, -1)$ है, पर मूल बिन्दु से खींची गयी एक स्पर्श रेखा का समीकरण $3x + y = 0$ हो, तो दूसरी स्पर्श रेखा का समीकरण है

वृत्त ${x^2} + {y^2} = {a^2}$ के एक बिन्दु से, वृत्त ${x^2} + {y^2} = {a^2}{\sin ^2}\alpha $ पर दो स्पर्श रेखायें खींची जाती हैं, तब उनके मध्य का कोण है

यदि $R$ त्रिज्या का एक वृत्त मूलबिन्दु $O$ से गुजरता है तथा निर्देशी अक्षों को बिन्दु $A$ तथा $B$ पर काटता है तो रेखा $A B$ पर स्थित बिन्दु $O$ से लम्ब के पाद का बिन्दुपथ होगा

  • [JEE MAIN 2019]

यदि किसी वक्र के बिन्दु $P(x,y)$ पर स्पर्श रेखा मूल बिन्दु को बिन्दु $P$ से मिलाने वाली रेखा के लम्बवत् हो, तो वक्र है