If the tangent at the point $P$ on the circle ${x^2} + {y^2} + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point $Q$ on the $y$- axis, then the length of $PQ$ is
$4$
$2\sqrt 5 $
$5$
$3\sqrt 5 $
In the given figure, $AB$ is tangent to the circle with centre $O$ , the ratio of the shaded region to the unshaded region of the triangle $OAB$ is
A pair of tangents are drawn to a unit circle with centre at the origin and these tangents intersect at A enclosing an angle of $60^o$. The area enclosed by these tangents and the arc of the circle is
A circle with centre $'P'$ is tangent to negative $x$ & $y$ axis and externally tangent to a circle with centre $(-6,0)$ and radius $2$ . What is the sum of all possible radii of the circle with centre $P$ ?
A circle with centre $(2,3)$ and radius $4$ intersects the line $x + y =3$ at the points $P$ and $Q$. If the tangents at $P$ and $Q$ intersect at the point $S(\alpha, \beta)$, then $4 \alpha-7 \beta$ is equal to $........$.
Match the statements in Column $I$ with the properties Column $II$ and indicate your answer by darkening the appropriate bubbles in the $4 \times 4$ matrix given in the $ORS$.
Column $I$ | Column $II$ |
$(A)$ Two intersecting circles | $(p)$ have a common tangent |
$(B)$ Two mutually external circles | $(q)$ have a common normal |
$(C)$ two circles, one strictly inside the other | $(r)$ do not have a common tangent |
$(D)$ two branches of a hyperbola | $(s)$ do not have a common normal |