રેખા $3x - 4y = 0$ એ :
વર્તૂળ $x^2 + y^2 = 25$ નો સ્પર્શક છે.
વર્તૂળ $x^2 + y^2 = 25$ નો અભિલંબ છે.
વર્તૂળ $x^2 + y^2 = 25$ ને મળતી નથી.
ઉગમબિંદુમાંથી પસાર થતી નથી.
રેખા $ax + by + c = 0$ એ વર્તૂળ $x^2 + y^2 = r^2$ નો અભિલંબ છે. વર્તૂળ દ્વારા $ax + by + c = 0$ રેખા પર અંત:ખંડનાં ભાગની લંબાઈ :
જો બિંદુ $(p, q)$ માંથી વર્તૂળ $x^{2} + y^{2} = px + qy$ (જ્યાં $pq \neq 0$) પર દોરેલી બે ભિન્ન જીવાઓ $x-$અક્ષ દ્વારા દુભાગે છે તો ....
બિંદુ $(2, 3)$ માંથી વર્તૂળ $2\ (x^2 + y^2) - 7x + 9y - 11 = 0$ પર દોરેલા સ્પર્શકની લંબાઈ :
બિંદુ $(1,\sqrt 3 )$ માંથી વર્તૂળ ${x^2} + {y^2} = 4$ પર દોરવામાં આવેલ સ્પર્શક અને અભિલંબ અને ધન $x$- અક્ષ દ્વારા બનતા ત્રિકોણનું ક્ષેત્રફળ મેળવો.
જો $y = c$ એ વર્તૂળ $x^2 + y^2 -2x + 2y - 2 = 0$ નો $(1, 1)$ આગળનો સ્પર્શક હોય, તો $c$ નું મુલ્ય :