If the system of linear equations $x + ky + 3z = 0;3x + ky - 2z = 0$ ; $2x + 4y - 3z = 0$  has a non-zero solution $\left( {x,y,z} \right)$ then $\frac{{xz}}{{{y^2}}} = $. . . . .

  • [JEE MAIN 2018]
  • A

    $10$

  • B

    $-30$

  • C

    $30$

  • D

    $-10$

Similar Questions

Let $\alpha $ and $\beta $ be the roots of the equation $x^2 + x + 1 = 0.$ Then for $y \ne 0$ in $R,$ $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$ is equal to

  • [JEE MAIN 2019]

Let $S=\left\{A=\left(\begin{array}{lll}0 & 1 & c \\ 1 & a & d \\ 1 & b & e\end{array}\right): a, b, c, d, e \in\{0,1\}\right.$ and $\left.|A| \in\{-1,1\}\right\}$, where $|A|$ denotes the determinant of $A$. Then the number of elements in $S$ is. . . . .

  • [IIT 2024]

If $'a'$ is non real complex number for which system of equations $ax -a^2y + a^3z$ = $0$ , $-a^2x + a^3y + az$ = $0$ and $a^3x + ay -a^2z$ = $0$ has non trivial solutions, then $|a|$ is 

One of the roots of the given equation $\left| {\,\begin{array}{*{20}{c}}{x + a}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right| = 0$ is

Let $\mathrm{A}$ be a square matrix of order $3 \times 3$ , then $|\mathrm{k A}|$ is equal to