જો સુરેખ સમીકરણ સંહતિ $x + ky + 3z = 0;3x + ky - 2z = 0$ ; $2x + 4y - 3z = 0$ ને શૂન્યતેર ઉકેલ $\left( {x,y,z} \right)$ હોય ,તો $\frac{{xz}}{{{y^2}}} = $. . . . .
$10$
$-30$
$30$
$-10$
જો સુરેખ સમીકરણો $x - 2y + kz = 1$ ; $2x + y + z = 2$ ; $3x - y - kz = 3$ નો ઉકેલ $(x, y, z) \ne 0$, હોય તો $(x, y)$ એ . . . . રેખા પર આવેલ છે .
સુરેખ સમીકરણ સંહતિ $a x+y+z=1$, $x+a y+z=1, x+y+a z=\beta$ માટે,નીચેના પૈકી કયું વિધાન સાચું નથી?
જો સમીકરણ સંહિત $2 x+3 y-z=5$ ; $x+\alpha y+3 z=-4$ ; $3 x-y+\beta z=7$ ને અસંખ્ય ઉકેલો હોય, તો $13 \alpha \beta$=____________.
જો $A_1B_1C_1,\, A_2B_2C_2,\, A_3B_3C_3$ એ ત્રણ અંકોની સંખ્યા છે કે જે $k$ વડે વિભાજ્ય છે અને $\Delta = \left| {\begin{array}{*{20}{c}}
{{A_1}{\kern 1pt} }&{{B_1}}&{{C_1}} \\
{{A_2}}&{{B_2}}&{{C_2}} \\
{{A_3}}&{{B_3}}&{{C_3}}
\end{array}} \right|$ હોય તો $\Delta $ એ . . વડે વિભાજ્ય છે .
જો $a \ne b \ne c,$ તો સમીકરણ $\left| {\,\begin{array}{*{20}{c}}0&{x - a}&{x - b}\\{x + a}&0&{x - c}\\{x + b}&{x + c}&0\end{array}\,} \right| = 0$ નું સમાધાન કરે તેવી $x$ ની કિમત મેળવો.