One of the roots of the given equation $\left| {\,\begin{array}{*{20}{c}}{x + a}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right| = 0$ is

  • A

    $ - (a + b)$

  • B

    $ - (b + c)$

  • C

    $ - a$

  • D

    $ - (a + b + c)$

Similar Questions

If the system of equations, $a^2 x - ay = 1 - a$ & $bx + (3 - 2b) y = 3 + a$ possess a unique solution $x = 1, y = 1$ then :

If $\left| \begin{array}{*{20}{c}}
{ - 2a}&{a + b}&{a + c}\\
{b + a}&{ - 2b}&{b + c}\\
{c + a}&{b + c}&{ - 2c}
\end{array}\right|$ $ = \alpha \left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) \ne 0$ then $\alpha $ is equal to

  • [AIEEE 2012]

If the system of linear equations $x - 2y + kz = 1$ ; $2x + y + z = 2$ ;  $3x - y - kz = 3$ Has a solution $(x, y, z) \ne 0$, then $(x, y)$ lies on the straight line whose equation is

  • [JEE MAIN 2019]

Let $S$ be the set of all values of $\theta \in[-\pi, \pi]$ for which the system of linear equations

$x+y+\sqrt{3} z=0$

$-x+(\tan \theta) y+\sqrt{7} z=0$

$x+y+(\tan \theta) z=0$

has non-trivial solution. Then $\frac{120}{\pi} \sum_{\theta \in s} \theta$ is equal to

  • [JEE MAIN 2023]

For which of the following ordered pairs $(\mu, \delta)$ the system of linear equations  $x+2 y+3 z=1$ ; $3 x+4 y+5 z=\mu$ ; $4 x+4 y+4 z=\delta$ is inconsistent?

  • [JEE MAIN 2020]