Let $S=\left\{A=\left(\begin{array}{lll}0 & 1 & c \\ 1 & a & d \\ 1 & b & e\end{array}\right): a, b, c, d, e \in\{0,1\}\right.$ and $\left.|A| \in\{-1,1\}\right\}$, where $|A|$ denotes the determinant of $A$. Then the number of elements in $S$ is. . . . .

  • [IIT 2024]
  • A

    $10$

  • B

    $15$

  • C

    $16$

  • D

    $20$

Similar Questions

If $\left| {\begin{array}{*{20}{c}}{a\, + \,1}&{a\, + \,2}&{a\, + \,p}\\{a\, + \,2}&{a\, +\,3}&{a\, + \,q}\\{a\, + \,3}&{a\, + \,4}&{a\, + \,r}\end{array}} \right|$ $= 0$ , then $p, q, r$ are in :

Let the area of the triangle with vertices $A (1, \alpha)$, $B (\alpha, 0)$ and $C (0, \alpha)$ be $4\, sq.$ units. If the point $(\alpha,-\alpha),(-\alpha, \alpha)$ and $\left(\alpha^{2}, \beta\right)$ are collinear, then $\beta$ is equal to

  • [JEE MAIN 2022]

The system of equations $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ has no solution, if $\alpha $ is

  • [AIEEE 2005]

If the system of linear equations  $x-2 y+z=-4 $   ;  $2 x+\alpha y+3 z=5 $  ;  $3 x-y+\beta z=3$ has infinitely many solutions, then $12 \alpha+13 \beta$ is equal to

  • [JEE MAIN 2024]

Let $M$ and $m$ respectively be the maximum and the minimum values of $f(x)=\left|\begin{array}{ccc}1+\sin ^2 x & \cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & 1+\cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & \cos ^2 x & 1+4 \sin 4 x\end{array}\right|, x \in R$ Then $M ^4- m ^4$ is equal to :____

  • [JEE MAIN 2025]