यदि रेखीय समीकरणों के निकाय $2 x-3 y=\gamma+5$ $\alpha x +5 y =\beta+1$, जहाँ $\alpha, \beta, \gamma \in R$ के अनन्त हल ह, तो $|9 \alpha+3 \beta+5 \gamma|$ का मान है
$56$
$89$
$58$
$30$
माना एक न्याय पासे को फेंकने पर प्राप्त संख्या $N$ है यदि समीकरण निकाय $x+y+z=1$ ; $2 x+N y+2 z=2$ ; $3 x+3 y+N z=3$ के अद्वितीय हल होने की प्रायिकता $\frac{k}{6}$ है, तो $k$ तथा $N$ के सभी संभव मानों का योग है
यदि रैखिक समीकरण निकाय $x + y + z =5$, $x +2 y +2 z =6$, $x +3 y +\lambda z =\mu,(\lambda, \mu \in R )$ के अनन्त हल है, तो $\lambda+\mu$ का मान है
यदि $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = k(a + b + c)({a^2} + {b^2} + {c^2}$ $ - bc - ca - ab)$, तो $k =$
$\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3\end{array}\right|$ का मान ज्ञात कीजिए।
$\left| {\,\begin{array}{*{20}{c}}{19}&{17}&{15}\\9&8&7\\1&1&1\end{array}\,} \right| = $