If the system of linear equations $2 x-3 y=\gamma+5$ ; $\alpha x+5 y=\beta+1$, where $\alpha, \beta, \gamma \in R$ has infinitely many solutions, then the value of $|9 \alpha+3 \beta+5 \gamma|$ is equal to
$56$
$89$
$58$
$30$
Find values of $x$, if $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
$\left| {\,\begin{array}{*{20}{c}}{bc}&{bc' + b'c}&{b'c'}\\{ca}&{ca' + c'a}&{c'a'}\\{ab}&{ab' + a'b}&{a'b'}\end{array}\,} \right|$ is equal to
The value of the determinant $\left| {\,\begin{array}{*{20}{c}}{10!}&{11!}&{12!}\\{11!}&{12!}&{13!}\\{12!}&{13!}&{14!}\end{array}\,} \right|$ is
If the system of equations $x +y + z = 6$ ; $x + 2y + 3z= 10$ ; $x + 2y + \lambda z = 0$ has a unique solution, then $\lambda $ is not equal to
If $A\, = \,\left[ \begin{gathered}
1\ \ \ \,1\ \ \ \,2\ \ \ \hfill \\
0\ \ \ \,2\ \ \ \,1\ \ \ \hfill \\
1\ \ \ \,0\ \ \ \,2\ \ \ \hfill \\
\end{gathered} \right]$ and $A^3 = (aA-I) (bA-I)$,where $a, b$ are integers and $I$ is a $3 × 3$ unit matrix then value of $(a + b)$ is equal to