જો સુરેખ સમીકરણ સંહિતા
$x+y+3 z=0$
$x+3 y+k^{2} z=0$
$3 x+y+3 z=0$
માટે શૂન્યેતર ઉકેલ $(x, y, z)$ જ્યાં $k \in R$ હોય તો $x +\left(\frac{ y }{ z }\right)$ ની કિમત મેળવો
$9$
$-3$
$-9$
$3$
જો ${2^{{a_1}}},{2^{{a_2}}},{2^{{a_3}}},{......2^{{a_n}}}$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{a_{n + 1}}}&{{a_{n + 2}}}&{{a_{n + 3}}} \\
{{a_{2n + 1}}}&{{a_{2n + 2}}}&{{a_{2n + 3}}}
\end{array}} \right|$ ની કિમંત મેળવો.
$\left| {\,\begin{array}{*{20}{c}}{19}&{17}&{15}\\9&8&7\\1&1&1\end{array}\,} \right| = $
જો સમીકરણની સંહતિ, $x + 2y - 3z = 1$, $(k + 3)z = 3,$ $(2k + 1)x + z = 0$ એ સુસંગત ન હોય , તો $k$ ની કિમત મેળવો.
નિશ્ચાયક $\Delta=\left|\begin{array}{rrr}1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0\end{array}\right|$ નું મૂલ્ય મેળવો.
જો $\left| {\begin{array}{*{20}{c}}
{^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\
{^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\
{^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}}
\end{array}} \right| = 0$ હોય તો $r$ મેળવો.