જો  સુરેખ સમીકરણોની સંહતિ $x+y+2 z=6$, $2 x+3 y+a z=a+1$, $-x-3 y+b z=2 b$ જ્યાં $a, b \in R$, ને અસંખ્ય ઉકેલો હોય, તો $7 a+3 b=$ ______

  • [JEE MAIN 2025]
  • A
    $9$
  • B
    $12$
  • C
    $16$
  • D
    $22$

Similar Questions

જો $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
  {\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)} \\ 
  {\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)} \\ 
  {\sin \left( {\alpha  + \beta } \right)}&{\sin \left( {\beta  + \gamma } \right)}&{\sin \left( {\gamma  + \alpha } \right)} 
\end{array}} \right|$ અને $f(10) = 10$ તો $f(\pi)$ મેળવો.

સમીકરણની સંહતિ $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ ને અનંત ઉકેલ હોય, તો $k$ ની કિમત મેળવો.

  • [IIT 2002]

સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&2&{ - 1}\\2&5&x\\{ - 1}&2&x\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.

જો ${\left| {\,\begin{array}{*{20}{c}}4&1\\2&1\end{array}\,} \right|^2} = \left| {\,\begin{array}{*{20}{c}}3&2\\1&x\end{array}\,} \right| - \left| {\,\begin{array}{*{20}{c}}x&3\\{ - 2}&1\end{array}\,} \right|$ તો $x =$

સમીકરણની સંહતિ $a + b - 2c = 0,$ $2a - 3b + c = 0$ અને $a - 5b + 4c = \alpha $ એ સુસંગત થવા માટે $\alpha$ મેળવો.