If the system of linear equations : $x+y+2 z=6$, $2 x+3 y+a z=a+1$, $-x-3 y+b z=2 b$ where $a, b \in R$, has infinitely many solutions, then $7 a+3 b$ is equal to :

  • [JEE MAIN 2025]
  • A
    $9$
  • B
    $12$
  • C
    $16$
  • D
    $22$

Similar Questions

Let for any three distinct consecutive terms $a, b, c$ of an $A.P,$ the lines $a x+b y+c=0$ be concurrent at the point $\mathrm{P}$ and $\mathrm{Q}(\alpha, \beta)$ be a point such that the system of equations $ x+y+z=6, $ $ 2 x+5 y+\alpha z=\beta$ and $x+2 y+3 z=4$, has infinitely many solutions. Then $(P Q)^2$ is equal to________.

  • [JEE MAIN 2024]

If ${A_\lambda } = \left( {\begin{array}{*{20}{c}}
\lambda &{\lambda  - 1}\\
{\lambda  - 1}&\lambda 
\end{array}} \right);\,\lambda  \in N$ then $|A_1| + |A_2| + ..... + |A_{300}|$ is equal to

If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&1&1\\2&{x + 2}&2\\3&3&{x + 3}\end{array}\,} \right| = 0,$ then $x$ is

Consider the following system of questions $\alpha x+2 y+z=1$  ;  $2 \alpha x+3 y+z=1$  ;  $3 x+\alpha y+2 z=\beta$ . For some $\alpha, \beta \in R$. Then which of the following is NOT correct.

  • [JEE MAIN 2023]

If the system of linear equations $x+y+3 z=0$

$x+3 y+k^{2} z=0$

$3 x+y+3 z=0$

has a non-zero solution $(x, y, z)$ for some $k \in R ,$ then $x +\left(\frac{ y }{ z }\right)$ is equal to

  • [JEE MAIN 2020]