If the system of equations $x + ay = 0,$ $az + y = 0$ and $ax + z = 0$ has infinite solutions, then the value of $a$ is
$-1$
$1$
$0$
No real values
Let $[\lambda]$ be the greatest integer less than or equal to $\lambda$. The set of all values of $\lambda$ for which the system of linear equations $x+y+z=4,3 x+2 y+5 z=3$ $9 x+4 y+(28+[\lambda]) z=[\lambda]$ has a solution is:
Evaluate the determinants
$\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$
The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ are
If $A = \left| {\,\begin{array}{*{20}{c}}{ - 1}&2&4\\3&1&0\\{ - 2}&4&2\end{array}\,} \right|$and $B = \left| {\,\begin{array}{*{20}{c}}{ - 2}&4&2\\6&2&0\\{ - 2}&4&8\end{array}\,} \right|$, then $B$ is given by
The number of values of $\theta \in (0,\pi)$ for which the system of linear equations
$x + 3y + 7z = 0$
$-x + 4y + 7z = 0$
$(sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ has a non-trivial solution, is