Evaluate the determinants

$\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A=\left[\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right]$

By expanding along the first column, we have:

$|A|=2\left|\begin{array}{cc}2 & -1 \\ -5 & 0\end{array}\right|-0\left|\begin{array}{cc}-1 & -2 \\ -5 & 0\end{array}\right|+3\left|\begin{array}{cc}-1 & -2 \\ 2 & -1\end{array}\right|$

$=2(0-5)-0+3(1+4)$

$=-10+15=5$

Similar Questions

The system of linear equations $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$has a unique solution if

In a $\Delta ABC,$ if $\left| {\,\begin{array}{*{20}{c}}1&a&b\\1&c&a\\1&b&c\end{array}\,} \right| = 0$, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $

Statement $1$ : If the system of equations $x + ky + 3z = 0, 3x+ ky - 2z = 0, 2x + 3y - 4z = 0$ has a nontrivial solution, then the value of $k$ is $\frac{31}{2}$

Statement $2$ : A system of three homogeneous equations in three variables has a non trivial solution if the determinant of the coefficient matrix is zero.

  • [AIEEE 2012]

Let $A=\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right)$ . If $A ^{2}+\gamma A +18 I = O$, then $\operatorname{det}( A )$ is equal to

  • [JEE MAIN 2022]

A root of the equation $\left| {\,\begin{array}{*{20}{c}}{3 - x}&{ - 6}&3\\{ - 6}&{3 - x}&3\\3&3&{ - 6 - x}\end{array}\,} \right| = 0$ is