The number of values of $\theta \in (0,\pi)$ for which the system of linear equations
$x + 3y + 7z = 0$
$-x + 4y + 7z = 0$
$(sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ has a non-trivial solution, is

  • [JEE MAIN 2019]
  • A

    $3$

  • B

    $2$

  • C

    $4$

  • D

    $1$

Similar Questions

Let $\lambda, \mu \in R$. If the system of equations

$ 3 x+5 y+\lambda z=3 $

$ 7 x+11 y-9 z=2 $

$ 97 x+155 y-189 z=\mu$

has infinitely many solutions, then $\mu+2 \lambda$ is equal to :

  • [JEE MAIN 2024]

$\left| {\,\begin{array}{*{20}{c}}0&{p - q}&{p - r}\\{q - p}&0&{q - r}\\{r - p}&{r - q}&0\end{array}\,} \right| = $

If $A, B, C$ are the angles of triangle then the value of determinant $\left| {\begin{array}{*{20}{c}}
  {\sin \,2A}&{\sin \,C}&{\sin \,B} \\ 
  {\sin \,C}&{\sin \,2B}&{\sin A} \\ 
  {\sin \,B}&{\sin \,A}&{\sin \,2C} 
\end{array}} \right|$ is

The value of the determinant given below $\left| {{\rm{ }}\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}} \right|$ is

$\left| {\,\begin{array}{*{20}{c}}{{{\sin }^2}x}&{{{\cos }^2}x}&1\\{{{\cos }^2}x}&{{{\sin }^2}x}&1\\{ - 10}&{12}&2\end{array}\,} \right| = $