The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$  are

  • A

    $1, 2$

  • B

    $-1, 2$

  • C

    $1, -2$

  • D

    $-1, -2$

Similar Questions

The solutions of the equation $\left| {\,\begin{array}{*{20}{c}}x&2&{ - 1}\\2&5&x\\{ - 1}&2&x\end{array}\,} \right| = 0$ are

$S$ denote the set of all real values of $\lambda$ such that the system of equations  $\lambda x + y + z =1$ ; $x +\lambda y + z =1$ ; $x + y +\lambda z =1$ is inconsistent, then $\sum_{\lambda \in S}\left(|\lambda|^2+|\lambda|\right)$ is equal to

  • [JEE MAIN 2023]

$l,m,n$ are the ${p^{th}},{q^{th}}$and ${r^{th}}$term of a G.P., all positive, then $\left| {\,\begin{array}{*{20}{c}}{\log l}&{p\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log m}&{q\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log n}&{r\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\end{array}\,} \right|$ equals

  • [AIEEE 2002]

If $a, b, c$ are non-zero real numbers and if the system of equations $(a - 1 )x = y + z,$  $(b - 1 )y = z + x ,$ $(c - 1 )z= x + y,$ has a non-trivial solution, then $ab + bc + ca$ equals

  • [JEE MAIN 2014]

For which of the following ordered pairs $(\mu, \delta)$ the system of linear equations  $x+2 y+3 z=1$ ; $3 x+4 y+5 z=\mu$ ; $4 x+4 y+4 z=\delta$ is inconsistent?

  • [JEE MAIN 2020]