यदि $n$ एक धनात्मक पूर्णांक है तथा ${C_k} = {\,^n}{C_k}$, तब ${\sum\limits_{k = 1}^n {{k^3}\left( {\frac{{{C_k}}}{{{C_{k - 1}}}}} \right)} ^2}$ =
$\frac{{n(n + 1)(n + 2)}}{{12}}$
$\frac{{n{{(n + 1)}^2}}}{{12}}$
$\frac{{n{{(n + 2)}^2}(n + 1)}}{{12}}$
इनमें से कोई नहीं
यदि $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^n C_1+{ }^n C_0=\frac{1023}{10}$ है, तो $\mathrm{n}$ बराबर है :
${n^n}{\left( {\frac{{n + 1}}{2}} \right)^{2n}}$ होगा
$(1+x)^{n+2}$ के द्विपद प्रसार में तीन क्रमागत पदों के गुणांकों का योगफल, जो $1: 3: 5$ अनुपात में है, होगा
यदि $(1+ x )^{20}$ के प्रसार में $x ^{ r }$ का गुणांक ${ }^{20} C _{ I }$ है, तो $\sum_{ r =0}^{20} I ^{2}{ }^{20} C _{ I }$ का मान बराबर है.....।
$(1- x )^{101}\left( x ^{2}+ x +1\right)^{100}$ के प्रसार में $x ^{256}$ का गुणांक है