જો અનંત સમગુણોતર શ્રેણી $GP$ :  $a, ar, ar^{2}, a r^{3}, \ldots$ ના પદોનો સરવાળો  $15$ છે અને પદોનો વર્ગનો સરવાળો  $150 $ થાય છે તો $\mathrm{ar}^{2}, \mathrm{ar}^{4}, \mathrm{ar}^{6} \ldots$ નો સરવાળો મેળવો.

  • [JEE MAIN 2021]
  • A

    $\frac{5}{2}$

  • B

    $\frac{1}{2}$

  • C

    $\frac{25}{2}$

  • D

    $\frac{9}{2}$

Similar Questions

સમગુણોત્તર શ્રેણીનાં પ્રથમ $3$ પદોનો સરવાળો $16$ છે અને પછીનાં ત્રણ પદોનો સરવાળો $128$ છે, તો આ શ્રેણીનું પ્રથમ પદ, સામાન્ય ગુણોત્તર અને $n$ પદોનો સરવાળો શોધો.

$2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}} \cdot \ldots .$ to $\infty$ ની કિમંત મેળવો.

  • [JEE MAIN 2020]

${{(0.2)}^{{{\log }_{\sqrt{5}}}\left( \frac{\text{1}}{\text{4}}\,+\,\frac{\text{1}}{\text{8}}\,+\,\frac{\text{1}}{\text{16}}\,+\,.....\,\infty  \right)}}$ નું મૂલ્ય:

અનંત સમગુણોત્તર શ્રેણીના પદોનો સરવાળો $3$ અને તેમના વર્ગનો સરવાળો પદ $3$ થાય, તો શ્રેણીનું પ્રથમ પદ અને સામાન્ય ગુણોત્તર કેટલો થાય?

સમગુણોત્તર શ્રેણીમાં પ્રથમ $1$ છે. જો $4T_2 + 5T_3$ ન્યૂનત્તમ હોય, તો તેનો સામાન્ય ગુણોત્તર કેટલો થાય ?