एक अनंन्त $GPa , ar , a r ^{2}, a r ^{3}, \ldots$ का योग 15 है तथा इसके प्रत्येक पद का वर्ग करने का योग 150 है, तो $a r^{2}, a r^{4}, a r^{6}, \ldots$ का योग है।
$\frac{5}{2}$
$\frac{1}{2}$
$\frac{25}{2}$
$\frac{9}{2}$
एक गुणोत्तर श्रेणी का तीसरा पद, पहले पद का वर्ग है। यदि दूसरा पद $8$ है, तब छँठा पद है
यदि किसी गुणोत्तर श्रेणी का प्रथम पद $a$, अन्तिम पद $l$ तथा सार्वअनुपात $r$ हो, तो इस श्रेणी के पदों की संख्या है
$2$ और $32$ के बीच $3$ गुणोत्तर माध्य हैं, तो तीसरे गुणोत्तर माध्य का मान होगा
माना $x _1, X _2, x _3, \ldots, x _{20}$ एक गुणोत्तर श्रेढ़ी में हैं, जिसमें $x _1=3$ तथा सार्व अनुपात $\frac{1}{2}$ है। प्रत्येक $x _{ i }$ की जगह $\left( x _{ i }- i \right)^2$ लेकर नये आंकड़ें बनाए जाते हैं। यदि नये आंकड़ों का माध्य $\overline{ x }$ है तो महत्तम पूर्णाक $\leq \overline{ x }$ है $..........$ I
यदि गुणोत्तर श्रेणी का चौथा, सातवाँ और दसवाँ पद क्रमश: $a, b$ और $c$ हों, तो $a,\;b,\;c$ में सम्बन्ध होगा