मान लीजिए कि त्रिभुज $A B C$ की भुजाएँ $a, b, c$ हैं, एवं वह $b^2=a c$ को संतुष्ट करती हैं। तब $\frac{\sin A \cot C+\cos A}{\sin B \cot C+\cos B}$ के सभी संभावित मानों का समुच्चय क्या होगा ?
$(0, \infty)$
$\left(0, \frac{\sqrt{5}+1}{2}\right)$
$\left(\frac{\sqrt{5}-1}{2}, \frac{\sqrt{5}+1}{2}\right)$
$\left(\frac{\sqrt{5}-1}{2}, \infty\right)$
यदि सार्व अनुपात $r(r>1)$ की एक $G.P.$ के तीन क्रमागत पद एक त्रिभुज की भुजाओं की लम्बाईयाँ है तथा $[r]$ महत्तम पूर्णांक $\leq r$ है, तो $3[r]+[-r]$ बराबर है ................
यदि $x,\;y,\;z$ गुणोत्तर श्रेणी में हों व ${a^x} = {b^y} = {c^z}$, तो
किसी गुणोत्तर श्रेणी का $5$ वाँ, $8$ वाँ तथा $11$ वाँ पद क्रमशः $p, q$ तथा $s$ हैं तो दिखाइए कि $q^{2}=p s$.
$x$ के किस मान के लिए संख्याएँ $-\frac{2}{7}, x, \frac{-7}{2}$ गुणोत्तर श्रेणी में हैं ?
यदि $a$ तथा $b$ के मध्य गुणोत्तर माध्य $\frac{{{a^{n + 1}} + {b^{n +1}}}}{{{a^n} + {b^n}}}$ है, तब $n$ का मान होगा