गुणोत्तर श्रेणी $3,3^{2}, 3^{3}, \ldots$ के कितने पद आवश्यक हैं ताकि उनका योगफल $120$ हो जाए |
The given $G.P.$ is $3,3^{2}, 3^{3} \ldots$
Let $n$ terms of this $G.P.$ be required to obtain in the sum as $120 .$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
Here, $a=3$ and $r=3$
$\therefore S_{n}=120=\frac{3\left(3^{n}-1\right)}{3-1}$
$\Rightarrow 120=\frac{3\left(3^{n}-1\right)}{2}$
$\Rightarrow \frac{120 \times 2}{3}=3^{n}-1$
$\Rightarrow 3^{n}-1=80$
$\Rightarrow 3^{n}=81$
$\Rightarrow 3^{n}=3^{4}$
$\therefore n=4$
Thus, four terms of the given $G.P.$ are required to obtain the sum as $120 .$
यदि $a,\;b,\;c$ समान्तर श्रेणी में हों, तब ${10^{ax + 10}},\;{10^{bx + 10}},\;{10^{cx + 10}}$ होंगे
यदि किसी गुणोत्तर श्रेणी का $5$ वाँ पद $\frac{1}{3}$हो एवं $9$ वाँ पद $\frac{{16}}{{243}}$ हो, तो चौथा पद होगा
यदि $x$ और $y$ के बीच गुणोत्तर माध्य $G$ है, तो $\frac{1}{{{G^2} - {x^2}}} + \frac{1}{{{G^2} - {y^2}}}$ का मान है
यदि $x,\;y,\;z$ गुणोत्तर श्रेणी में हों व ${a^x} = {b^y} = {c^z}$, तो
किसी गुणोत्तर श्रेणी का प्रथम पद $1$ है। तीसरे एवं पाँचवें पदों का योग $90$ हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात कीजिए।