If the line $y = 2x + c$ be a tangent to the ellipse $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$, then $c = $
$ \pm 4$
$ \pm 6$
$ \pm 1$
$ \pm 8$
Let the length of the latus rectum of an ellipse with its major axis long $x -$ axis and center at the origin, be $8$. If the distance between the foci of this ellipse is equal to the length of the length of its minor axis, then which one of the following points lies on it?
The equation of the ellipse whose vertices are $( \pm 5,\;0)$ and foci are $( \pm 4,\;0)$ is
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4 x ^{2}+9 y ^{2}=36$
If $F_1$ and $F_2$ be the feet of the perpendicular from the foci $S_1$ and $S_2$ of an ellipse $\frac{{{x^2}}}{5} + \frac{{{y^2}}}{3} = 1$ on the tangent at any point $P$ on the ellipse, then $(S_1 F_1) (S_2 F_2)$ is equal to
Latus rectum of ellipse $4{x^2} + 9{y^2} - 8x - 36y + 4 = 0$ is