જો સમીકરણ સંહતિ $2 x+y+z=5$  ;   $x-y+z=3$  ;  $x+y+a z=b$  નો ઉકેલગણ ખાલીગણ હોય તો  . . . 

  • [JEE MAIN 2021]
  • A

    $\mathrm{a}=-\frac{1}{3}, \mathrm{~b} \neq \frac{7}{3}$

  • B

    $a \neq \frac{1}{3}, b=\frac{7}{3}$

  • C

    $\mathrm{a} \neq-\frac{1}{3}, \mathrm{~b}=\frac{7}{3}$

  • D

    $\mathrm{a}=\frac{1}{3}, \mathrm{~b} \neq \frac{7}{3}$

Similar Questions

ધારો કે  $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ અને  $|2 A|^3=2^{21}$ છે જ્યાં  $\alpha, \beta \in Z$,તો  $\alpha $ ની એક કિંમત ______________ છે.

  • [JEE MAIN 2024]

જો ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
  r&{2r - 1}&{3r - 2} \\ 
  {\frac{n}{2}}&{n - 1}&a \\ 
  {\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)} 
\end{array}} \right|$ તો $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $ ની કિમત  . . .

  • [JEE MAIN 2014]

સમીકરણ $\left| {\,\begin{array}{*{20}{c}}1&4&{20}\\1&{ - 2}&5\\1&{2x}&{5{x^2}}\end{array}\,} \right| = 0$ ના બીજ મેળવો.

  • [IIT 1987]

જો $a > 0$ અને વિવેચક $a{x^2} + 2bx + c < 0 $ છે, તો $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ = . . .

  • [AIEEE 2002]

જો $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = k(a + b + c)({a^2} + {b^2} + {c^2}$ $ - bc - ca - ab)$, તો  $k =$