If the following system of linear equations

$2 x+y+z=5$

$x-y+z=3$

$x+y+a z=b$

has no solution, then :

  • [JEE MAIN 2021]
  • A

    $\mathrm{a}=-\frac{1}{3}, \mathrm{~b} \neq \frac{7}{3}$

  • B

    $a \neq \frac{1}{3}, b=\frac{7}{3}$

  • C

    $\mathrm{a} \neq-\frac{1}{3}, \mathrm{~b}=\frac{7}{3}$

  • D

    $\mathrm{a}=\frac{1}{3}, \mathrm{~b} \neq \frac{7}{3}$

Similar Questions

If $'a'$ is non real complex number for which system of equations $ax -a^2y + a^3z$ = $0$ , $-a^2x + a^3y + az$ = $0$ and $a^3x + ay -a^2z$ = $0$ has non trivial solutions, then $|a|$ is 

Let $\alpha \beta \neq 0$ and $A=\left[\begin{array}{ccc}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right]$. If $B=\left[\begin{array}{ccc}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$ is the matrix of cofactors of the elements of $A$, then $\operatorname{det}(A B)$ is equal to.

  • [JEE MAIN 2024]

If the system of equations

$ x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 $

$ x+(\cos \alpha) y+(\sin \alpha) z=0 $

$ x+(\sin \alpha) y-(\cos \alpha) z=0$

has a non-trivial solution, then $\alpha \in\left(0, \frac{\pi}{2}\right)$ is equal to :

  • [JEE MAIN 2024]

$\left| {\begin{array}{*{20}{c}}0&a&{ - b}\\{ - a}&0&c\\b&{ - c}&0\end{array}} \right| = $

The system of equations $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$, will have a non zero solution if real values of $\lambda $ are given by

  • [IIT 1984]