વિધેય $\frac{1}{{\left( {1 - ax} \right)\left( {1 - bx} \right)}}$ નુ $x$ ની ધાતાકમાં વિસ્તરણ ${a_0} + {a_1}x + {a_2}{x^2} + \;{a_3}{x^3} + \; \ldots......$ હોય તો ${a_n}$ મેળવો. 

  • [AIEEE 2006]
  • A

    $\frac{{{b^n} - {a^n}}}{{b - a}}$

  • B

    $\;\frac{{{a^n} - {b^n}}}{{b - a}}$

  • C

    $\;\frac{{{a^{n + 1}} - {b^{n + 1}}}}{{b - a}}$

  • D

    $\;\frac{{{b^{n + 1}} - {a^{n + 1}}}}{{b - a}}$

Similar Questions

ધારોકે $\sum \limits_{r=0}^{2023} r^{2023} C_r=2023 \times \alpha \times 2^{2022}$, તો $\alpha$ નું મૂલ્ય $............$ છે.

  • [JEE MAIN 2023]

જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, તો ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ = . . .

  • [IIT 1971]

ધારો કે $m, n \in N$ અને ગુ.સા.અ. $\operatorname{gcd}(2, n)=1$. જો $30\left(\begin{array}{l}30 \\ 0\end{array}\right)+29\left(\begin{array}{l}30 \\ 1\end{array}\right)+\ldots+2\left(\begin{array}{l}30 \\ 28\end{array}\right)+1\left(\begin{array}{l}30 \\ 29\end{array}\right)= n .2^{ m }$ તો $n + m=.......$

(અહીં $\left.\left(\begin{array}{l} n \\ k \end{array}\right)={ }^{ n } C _{ k }\right)$

  • [JEE MAIN 2021]

$(\alpha + p)^{m - 1} + (\alpha + p)^{m - 2} (\alpha + q) + (\alpha + p)^{m - 3} (\alpha + q)^2 + ...... (\alpha + q)^{m - 1}$ 

વિસ્તરણમાં $\alpha ^t$ નો સહગુણક મેળવો.

જ્યાં $\alpha \ne - q$ અને $p \ne q$  

જો ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ ના સહગુણકનો સરવાળો શૂન્ય હોય તો $\alpha $ મેળવો.

  • [IIT 1991]