बिन्दुओं $({a_1},{b_1})$ तथा $({a_2},{b_2})$ से समान दूरी पर स्थित किसी बिन्दु का बिन्दुपथ $({a_1} - {a_2})x + ({b_1} - {b_2})y + c = 0$ है, तब $‘c’$ का मान है
$\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$
$a_1^2 - a_2^2 + b_1^2 - b_2^2$
$\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$
$\sqrt {a_1^2 + b_1^2 - a_2^2 - b_2^2} $
एक समबाहु त्रिभुज के आधार का समीकरण $2x - y = 1$ और शीर्ष $(-1, 2)$ है, तब त्रिभुज की भुजा की लम्बाई होगी
किसी त्रिभुज के दो शीर्ष $(5, - 1)$ व $( - 2,3)$ हैं। यदि लम्बकेन्द्र मूल बिन्दु हों, तो तीसरे शीर्ष के निर्देशांक हैं
किसी समान्तर चतुभुज की दो आस भुजायें $4x + 5y = 0$ व $7x + 2y = 0$ हैं। यदि एक विकर्ण का समीकरण $11x + 7y = 9$ हो, तो दूसरे विकर्ण का समीकरण है
यदि रेखा $3 x +4 y -24=0, x$-अक्ष को बिन्दु $A$ तथा $y$-अक्ष को बिन्दु $B$ पर काटती है, तो त्रिभुज $OAB$, जहाँ $O$ मूलबिन्दु है, का अन्तः केन्द्र है
रेखा $2x + 3y = 12$, $x$-अक्ष को बिन्दु $A$ तथा $y$-अक्ष को बिन्दु $B$ पर मिलती है। बिन्दु $(5, 5)$ से जाने वाली रेखा $AB$ पर लम्ब है एवं यह रेखा $x$-अक्ष, $y$-अक्ष तथा दी गई रेखा को क्रमश: $C, \,D$ व $E$ पर मिलती है। यदि $O$ मूल बिन्दु हो, तो $OCEB$ का क्षेत्रफल है