यदि रेखा $3 x +4 y -24=0, x$-अक्ष को बिन्दु $A$ तथा $y$-अक्ष को बिन्दु $B$ पर काटती है, तो त्रिभुज $OAB$, जहाँ $O$ मूलबिन्दु है, का अन्तः केन्द्र है
$(3, 4)$
$(2, 2)$
$(4, 3)$
$(4, 4)$
किसी त्रिभुज के दो शीर्ष $(5, - 1)$ व $( - 2,3)$ हैं। यदि लम्बकेन्द्र मूल बिन्दु हों, तो तीसरे शीर्ष के निर्देशांक हैं
शीर्ष $(0, 0), (0, 21)$ तथा $(21, 0)$ वाले त्रिभुज के पूर्णत: अन्दर, पूर्णांक बिन्दुओं की संख्या है (पूर्णांक बिन्दु का अर्थ है, जिसके दोनों निर्देशांक पूर्णांक हों)
त्रिभुज $A B C$ की भुजा $A B$ तथा $A C$ पर बिंदु $X, Y$ क्रमश: इस प्रकार स्थापित हैं कि रेखाखंड $X Y$ और $B C$ समांतर हैं । निम्नलिखित में से कौन से कथन हमेशा उचित हैं? (यहाँ त्रिभुज $P Q R$ का क्षेत्रफल $[P Q R]$ से निर्देशित किया गया है)
$(I)$ $[B C X]=[B C Y]$
$(II)$ $[A C X] \cdot[A B Y]=[A X Y] \cdot[A B C]$
$xy$-समतल में किसी वर्ग के दो विपरीत शीर्ष $A(-1, 1)$, $B(5, 3)$ हैं, तो वर्ग के अन्य विकर्ण का समीकरण ($A, B$ से न जाने वाला) होगा
मान लीजिए $m, n$ वास्तविक संख्याएँ इस तरह है: $0 \leq m \leq \sqrt{3}$ तथा $-\sqrt{3} \leq n \leq 0$ |एक तल, जिस पर बिन्दु $(x, y)$ असमानताएँ $(inequalities)$ $y \geq 0, y-3 \leq m x, y-3 \leq n x$ को संतुश्श करती है, का न्यूनतम संभावित क्षेत्रफल क्या होगा?