If the equation, $x^{2}+b x+45=0(b \in R)$ has conjugate complex roots and they satisfy $|z+1|=2 \sqrt{10},$ then
$b^{2}-b=42$
$b^{2}+b=12$
$b^{2}+b=72$
$b^{2}-b=30$
The amplitude of the complex number $z = \sin \alpha + i(1 - \cos \alpha )$ is
If $z = \frac{{ - 2}}{{1 + \sqrt 3 \,i}}$ then the value of $arg\,(z)$ is
If ${z_1},{z_2},{z_3}$ are complex numbers such that $|{z_1}|\, = \,|{z_2}|\, = $ $\,|{z_3}|\, = $ $\left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1\,,$ then${\rm{ }}|{z_1} + {z_2} + {z_3}|$ is
If complex numbers $z_1$, $z_2$ are such that $\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = \sqrt 3$ and $\left| {{z_1} + {z_2}} \right| = \sqrt {5 - 2\sqrt 3 }$, then the value of $|Arg z_1 -Arg z_2|$ is
If $z = x + iy$ satisfies $|z|-2=0$ and $|z-i|-|z+5 i|=0$, then