उस समान्तर चतुभुज का क्षेत्रफल, जिसकी भुजाएँ $x\cos \alpha + y\sin \alpha = p$, $x\cos \alpha + y\sin \alpha = q,\,\,$ $x\cos \beta + y\sin \beta = r$ व $x\cos \beta + y\sin \beta = s$ हैं, होगा
$ \pm (p - q)(r - s)\,{\rm{cosec}}(\alpha - \beta )$
$(p + q)(r - s)\,{\rm{cosec }}(\alpha + \beta )$
$(p + q)(r + s)\,{\rm{cosec }}(\alpha - \beta )$
इनमें से कोई नहीं
किसी त्रिभुज के दो शीर्ष $(5, - 1)$ व $( - 2,3)$ हैं। यदि लम्बकेन्द्र मूल बिन्दु हों, तो तीसरे शीर्ष के निर्देशांक हैं
त्रिभुज $PQR$ वृत्त $x^2$+$y^2$=$25$ से घिरा हुआ है। यदि $Q$ और $R$ के निर्देशांक क्रमशः $(3,4)$ और ;$(-4,3)$ हैं, तब $\angle \,QPR$ का मान है
माना एक समांतर चतुर्भुज $\mathrm{ABCD}$ के शीर्ष $\mathrm{A}(-2,-1), \mathrm{B}(1,0), \mathrm{C}(\alpha, \beta)$ तथा $\mathrm{D}(\gamma, \delta)$ है। यदि बिंदु $C$ रेखा $2 x-y=5$ पर है तथा बिंदु $D$, रेखा $3 x-2 y=6$ पर है तो $|\alpha+\beta+\gamma+\delta|$ का मान बराबर है ...............
बिन्दु $(3, 4)$ से दो रेखायें खींची जाती हैं, जिनमें से प्रत्येक रेखा, रेखा $x - y = 2$ के साथ $45^o $ का कोण बनाती हेै, तब इन रेखाओं से बने त्रिभुज का क्षेत्रफल है
कार्तीय तल में एक चतुर्भुज खींचिए जिसके शीर्ष $(-4,5),(0,7),(5,-5)$ और $(-4,-2)$ हैं। इसका क्षेत्रफल भी ज्ञात कीजिए।