જો $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{2022}$ ના દ્વિપદી વિસ્તરણમાં છેલ્લેથી $1011$ મું પદ એ શરૂઆતના $1011$ માં પદનું $1024$ ગણુું હોય, તો $|x|=......$

  • [JEE MAIN 2023]
  • A

    $12$

  • B

    $8$

  • C

    $\frac{5}{16}$

  • D

    $15$

Similar Questions

 $(1+ x)(1- x)^{10} (1+ x + x^2 )^9$  ના વિસ્તરણમાં $x^{18}$ નો સહગુણક મેળવો.

  • [JEE MAIN 2019]

${(1 + x)^{20}}$ ના વિસ્તરણમાં ${r^{th}}$ અને ${(r + 4)^{th}}$ પદોના સહગુણક સમાન હોય તો . . . .

જો ${\left( {{x^2} + \frac{1}{x}} \right)^m}$ ના વિસ્તરણમાં પ્રથમ,દ્રીતીય અને તૃતીય પદોનો સરવાળો $46$, હોય તો જે પદમાં $x$ ન હોય તેવા પદનો સહગુણક મેળવો 

$\sum\limits_{m = 0}^{100} {{\,^{100}}{C_m}{{(x - 3)}^{100 - m}}} {.2^m}$ ના વિસ્તરણમાં ${x^{53}}$ નો સહગુણક મેળવો.

$(x+a)^n$ ના વિસ્તરણમાં બીજું, ત્રીજું અને ચોથું પદ અનુક્રમે $240, 720$ અને $1080$ છે. $x, a$ અને $n$ શોધો.