If the $1011^{\text {th }}$ term from the end in the binomial expansion of $\left(\frac{4 x}{5}-\frac{5}{2 x }\right)^{2022}$ is $1024$ times $1011^{\text {th }}$ term from the beginning, then $|x|$ is equal to
$12$
$8$
$\frac{5}{16}$
$15$
If some three consecutive in the binomial expansion of ${\left( {x + 1} \right)^n}$ in powers of $x$ are in the ratio $2 : 15 : 70$, then the average of these three coefficient is
The interval in which $x$ must lie so that the greatest term in the expansion of ${(1 + x)^{2n}}$ has the greatest coefficient, is
In the expansion of ${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$, the coefficient of ${x^4}$is
The term independent of $x$ in the expansion ${\left( {{x^2} - \frac{1}{{3x}}} \right)^9}$ is
For the natural numbers $m, n$, if $(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots .+a_{m+n} y^{m+n}$ and $a_{1}=a_{2}$ $=10$, then the value of $(m+n)$ is equal to: