यदि समीकरण $8 \cos x \cdot\left(\cos \left(\frac{\pi}{6}+x\right) \cdot \cos \left(\frac{\pi}{6}-x\right)-\frac{1}{2}\right)=1$ के अंतराल $[0 . \pi]$ में सभी हलों का योग $k \pi$ है, तो $k$ बराबर है

  • [JEE MAIN 2018]
  • A

    $\frac{{13}}{9}$

  • B

    $\frac{8}{9}$

  • C

    $\frac{{20}}{9}$

  • D

    $\frac{2}{3}$

Similar Questions

समीकरण $2 \sin 3 x+\sin 7 x-3=0$ के ऐसे वास्तविक समाधानों की संख्या जो अन्तराल $[-2 \pi, 2 \pi]$ के बीच है, निम्नलिखित है

  • [KVPY 2017]

यदि $\cos 6\theta  + \cos 4\theta  + \cos 2\theta  + 1 = 0$, जहाँ  $0 < \theta  < {180^o}$, तो $\theta  =$

मान लीजिए $S=\{x \in R : \cos (x)+\cos (\sqrt{2} x) < 2\}$, तब

  • [KVPY 2018]

समीकरण $4 \sin ^2 x-4 \cos ^3 x+9-4 \cos x=0$; $x \in[-2 \pi, 2 \pi]$ के हलों की संख्या है :

  • [JEE MAIN 2024]

यदि $\frac{{1 - {{\tan }^2}\theta }}{{{{\sec }^2}\theta }} = \frac{1}{2}$, तो $\theta $ के व्यापक मान हैं