यदि समीकरण $8 \cos x \cdot\left(\cos \left(\frac{\pi}{6}+x\right) \cdot \cos \left(\frac{\pi}{6}-x\right)-\frac{1}{2}\right)=1$ के अंतराल $[0 . \pi]$ में सभी हलों का योग $k \pi$ है, तो $k$ बराबर है
$\frac{{13}}{9}$
$\frac{8}{9}$
$\frac{{20}}{9}$
$\frac{2}{3}$
माना $S=\left\{\theta \in\left(0, \frac{\pi}{2}\right): \sum \limits_{m=1}^9 \sec \left(\theta+( m -1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{ m \pi}{6}\right)=-\frac{8}{\sqrt{3}}\right\}$ है। तब
यदि $(1 + \tan \theta )(1 + \tan \phi ) = 2$, तब $\theta + \phi =$ ......$^o$
$\theta $ का वह मान, जो समीकरण $\cos \theta + \sqrt 3 \sin \theta = 2$ को सन्तुष्ट करता है, है
यदि $2{\cos ^2}x + 3\sin x - 3 = 0,\,\,0^\circ \le x \le {180^o}$, तो $x =$
यदि $\theta $ और $\phi $ न्यूनकोण को सन्तुष्ट करते हैं व $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3},$ तो $\theta $+$\phi $ का मान है