સમીકરણ $8\cos x \cdot \left( {\cos \left( {\frac{\pi }{6} + x} \right) \cdot \cos \left( {\frac{\pi }{6} - x} \right) - \frac{1}{2}} \right) = 1$ નાં અંતરાલ $\left[ {0,\pi } \right]$ માં તમામ ઉકેલોની સરવાળો જો $k\pi $ હોય તો $k = \;.\;.\;.$ .
$\frac{{13}}{9}$
$\frac{8}{9}$
$\frac{{20}}{9}$
$\frac{2}{3}$
જો $\sin {\rm{ }}\left( {\frac{\pi }{4}\cot \theta } \right) = \cos {\rm{ }}\left( {\frac{\pi }{4}\tan \theta } \right)\,\,,$ તો $\theta = $
જો $2\sin \theta + \tan \theta = 0$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $4 \sin ^2 x-4 \cos ^3 x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi]$ નાં ઉકેલોની સંખ્યા __________છે.
સમીકરણ $ln(1 + sin^2x) = 1 -ln(5 + x^2)$ ના ઉકેલોની સંખ્યા મેળવો
જો $L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ અને $M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right),$ હોય તો