સમીકરણ $4 \sin ^2 x-4 \cos ^3 x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi]$ નાં ઉકેલોની સંખ્યા __________છે.
$1$
$3$
$2$
$0$
સમીકરણ $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi$ $3 \pi]$ ના ઉકેલોની સંખ્યા ..... છે
જો $\sin 3\alpha = 4\sin \alpha \sin (x + \alpha )\sin (x - \alpha ),$ તો $x = $
સમીકરણ $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$ નું સમાધાન કરે તેવા $\theta $ ની ન્યૂનતમ કિમત મેળવો.
સમીકરણ $\frac{{\left (sin 36^o + cos 36^o - \sqrt 2 sin 27^o)( {\sin {{36}^0} + \cos {{36}^0} - \sqrt 2 \sin {{27}^0}} \right)}}{{2\sin {{54}^0}}}$ ની કિમત ......... કરતાં ઓછી છે
જો $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, તો $\theta $ ની શક્ય કિમત મેળવો.