જો બળ $ (F),$ વેગ $(V)$ અને સમય $(T)$ ને મૂળભૂત એકમ તરીકે લેવામાં આવે, તો દળનું પરિમાણ શું થાય?
$\left[ {FV{T^{ - 1}}} \right]$
$\;\left[ {FV{T^{ - 2}}} \right]$
$\;\left[ {F{V^{ - 1}}{T^{ - 1}}} \right]$
$\;\left[ {F{V^{ - 1}}T} \right]$
પદાર્થનું સ્થાન $ x = K{a^m}{t^n}, $ જયાં $a$ પ્રવેગ અને $t$ સમય હોય,તો $m$ અને $n$ ના મૂલ્યો શું હોવા જોઈએ?
એક લાક્ષણિક દહનશીલ એન્જીન (કંબશન એન્જીન) માં વાયુનાં અણુ દ્વારા થયેલ કાર્યને $W=\alpha^{2} \beta e^{\frac{-\beta x^{2}}{k T}}$ દ્વારા આપવામાં આવે છે જ્યાં $x$ સ્થાનાંતર, $k$ બોલ્ટ્ઝમેન અચળાંક અને $T$ તાપમાન દર્શાવે છે. જો $\alpha$ અને $\beta$ અચળાંકો હોય, તો $\beta$ નું પરિમાણ ......... હશે.
$M{L^{ - 1}}{T^{ - 2}}$ એ કઈ રાશિ પ્રદર્શિત કરે?
સૂત્ર $X = 5YZ^2$, $X$ અને $Z$ ના પરિમાણ કેપેસિટન્સ અને ચુંબકીયક્ષેત્ર જેવા છે. તો $SI$ એકમ પધ્ધતિમાં $Y$ નું પરિમાણ શું થશે?
એક વિદ્યાર્થી ભૌતિકવિજ્ઞાનમાં પ્રચલિત એવા કોઈ કણનાં ચલિતદળ $(moving\, mass)$ $m$ અને સ્થિર દળ $(rest \,mass)$ $m_{0}$ તથા કણનો વેગ $v$ અને પ્રકાશની ઝડપ $c$ વચ્ચેનો (આ સંબંધ પ્રથમ આલ્બર્ટ આઇન્સ્ટાઇનના વિશિષ્ટ સાપેક્ષતાના સિદ્ધાંતનાં પરિણામ સ્વરૂપે મળેલ હતો.) સંબંધને લગભગ સાચો યાદ રાખીને લખે છે. પરંતુ અચળાંક $c$ ને ક્યાં મૂકવો તે ભૂલી જાય છે. તે $m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$ લખે છે. અનુમાન કરો કે $c$ ને ક્યાં મૂકવો જોઈએ ?