If force $(F),$ velocity $(V)$ and time $(T)$ are taken as fundamental units, then the dimensions of mass are
$\left[ {FV{T^{ - 1}}} \right]$
$\;\left[ {FV{T^{ - 2}}} \right]$
$\;\left[ {F{V^{ - 1}}{T^{ - 1}}} \right]$
$\;\left[ {F{V^{ - 1}}T} \right]$
Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass $(m)$ to energy $(E)$ as $E = mc^2$, where $c$ is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in $MeV$, where $1\,MeV = 1.6\times 10^{-13}\,J$ ; the masses are measured i unified atomicm mass unit (u) where, $1\,u = 1.67 \times 10^{-27}\, kg$
$(a)$ Show that the energy equivalent of $1\,u$ is $ 931.5\, MeV$.
$(b)$ A student writes the relation as $1\,u = 931.5\, MeV$. The teacher points out that the relation is dimensionally incorrect. Write the correct relation.
If electronic charge $e$, electron mass $m$, speed of light in vacuum $c$ and Planck 's constant $h$ are taken as fundamental quantities, the permeability of vacuum $\mu _0$ can be expressed in units of
Let us consider an equation
$\frac{1}{2} m v^{2}=m g h$
where $m$ is the mass of the body. velocity, $g$ is the acceleration do gravity and $h$ is the height. whether this equation is dimensionally correct.
A function $f(\theta )$ is defined as $f(\theta )\, = \,1\, - \theta + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ Why is it necessary for $f(\theta )$ to be a dimensionless quantity ?