જો એક વિતરણ માટે $\Sigma(x-5)=3, \Sigma(x-5)^{2}=43$ અને વસ્તુઓની સંખ્યા $18$ હોય તો તેનો મધ્યક અને પ્રમાણિત વિચલન મેળવો 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given, $n=18, \Sigma(x-5)=3$ and $\Sigma(x-5)^{2}=43$

$\therefore \quad \operatorname{Mean}=A+\frac{\Sigma(x-5)}{18}=5+\frac{3}{18}=5+0.1666=5.1666=5.17$

and $\quad SD =\sqrt{\frac{\Sigma(x-5)^{2}}{n}-\left(\frac{\Sigma(x-5)}{n}\right)^{2}}=\sqrt{\frac{43}{18}-\left(\frac{3}{18}\right)^{2}}$

$=\sqrt{2.3889-(0.166)^{2}}=\sqrt{2.3889-0.0277}=1.53$

Similar Questions

જો આવૃત્તિ વિતરણ 

$X_i$ $2$ $3$ $4$ $5$ $6$ $7$ $8$
Frequency $f_i$ $3$ $6$ $16$ $\alpha$ $9$ $5$ $6$

નું વિચરણ $3$ હોય, તો $\alpha=..............$

  • [JEE MAIN 2023]

કોઇ અલગ શ્રેણીમાં (જ્યારે બધા જ મૂલ્યો સમાન ન હોય) સરેરાશ વિચલન, મધ્યક અને પ્રમાણિત વિચલન વચ્ચેનો સંબંધ શું થાય ?

$50 $ મધ્યક વાળા $10$  અવલોકનોના વિચલનના વર્ગનો સરવાળો $250 $ હોય તો વિચરણનો ચલનાંક કેટલો થાય ?

આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.

વર્ગ 

$0-30$ $30-60$ $60-90$ $90-120$ $120-150$ $50-180$ $180-210$

આવૃત્તિ

$2$ $3$ $5$ $10$ $3$ $5$ $2$

આવૃતી વિતરણ

$\mathrm{x}$ $\mathrm{x}_{1}=2$ $\mathrm{x}_{2}=6$ $\mathrm{x}_{3}=8$ $\mathrm{x}_{4}=9$
$\mathrm{f}$ $4$ $4$ $\alpha$ $\beta$

માં જો મધ્યક અને વિચરણ અનુક્રમે $6$ અને $6.8$ છે. જો $x_{3}$ એ $8$ માંથી $7$ કરવામાં આવે છે તો નવી માહિતીનો મધ્યક મેળવો.

  • [JEE MAIN 2021]