જો એક વિતરણ માટે $\Sigma(x-5)=3, \Sigma(x-5)^{2}=43$ અને વસ્તુઓની સંખ્યા $18$ હોય તો તેનો મધ્યક અને પ્રમાણિત વિચલન મેળવો
Given, $n=18, \Sigma(x-5)=3$ and $\Sigma(x-5)^{2}=43$
$\therefore \quad \operatorname{Mean}=A+\frac{\Sigma(x-5)}{18}=5+\frac{3}{18}=5+0.1666=5.1666=5.17$
and $\quad SD =\sqrt{\frac{\Sigma(x-5)^{2}}{n}-\left(\frac{\Sigma(x-5)}{n}\right)^{2}}=\sqrt{\frac{43}{18}-\left(\frac{3}{18}\right)^{2}}$
$=\sqrt{2.3889-(0.166)^{2}}=\sqrt{2.3889-0.0277}=1.53$
જો આવૃત્તિ વિતરણ
$X_i$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ |
Frequency $f_i$ | $3$ | $6$ | $16$ | $\alpha$ | $9$ | $5$ | $6$ |
નું વિચરણ $3$ હોય, તો $\alpha=..............$
કોઇ અલગ શ્રેણીમાં (જ્યારે બધા જ મૂલ્યો સમાન ન હોય) સરેરાશ વિચલન, મધ્યક અને પ્રમાણિત વિચલન વચ્ચેનો સંબંધ શું થાય ?
$50 $ મધ્યક વાળા $10$ અવલોકનોના વિચલનના વર્ગનો સરવાળો $250 $ હોય તો વિચરણનો ચલનાંક કેટલો થાય ?
આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.
વર્ગ |
$0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $50-180$ | $180-210$ |
આવૃત્તિ |
$2$ | $3$ | $5$ | $10$ | $3$ | $5$ | $2$ |
આવૃતી વિતરણ
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
માં જો મધ્યક અને વિચરણ અનુક્રમે $6$ અને $6.8$ છે. જો $x_{3}$ એ $8$ માંથી $7$ કરવામાં આવે છે તો નવી માહિતીનો મધ્યક મેળવો.