If each of the observation $x_{1}, x_{2}, \ldots ., x_{n}$ is increased by $'a'$ where $a$ is a negative or positive number, show that the variance remains unchanged.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $\bar{x}$ be the mean of $x_{1}, x_{2}, \ldots ., x_{n} .$ Then the variance is given by

$\sigma _1^2 = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \bar x} \right)}^2}} $

If $'a$ is added to each observation, the new observations will be

$y_{i}=x_{i}+a$        .......$(1)$

Let the mean of the new observations be $\bar{y} .$ Then

$\bar y = \frac{1}{n}\sum\limits_{i = 1}^n {{y_i} = \frac{1}{n}} \sum\limits_{i = 1}^n {\left( {{x_i} - a} \right)} $

$ = \frac{1}{n}\left[ {\sum\limits_{i = 1}^n {{x_i}} \sum\limits_{i = 1}^n a } \right] = \frac{1}{n}\sum\limits_{i = 1}^n {{x_i} + \frac{{na}}{n} = } \bar x + a$

i.e.        $\bar{y}=\bar{x}+a$           ..........$(2)$

Thus, the variance of the new observations

$\sigma _2^2 = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{y_i} - \bar y} \right)}^2}}  = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} + a - \bar x - a} \right)}^2}} $         [ Using $(1)$ and $(2)$ ]

$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} + \bar x} \right)}^2}}  = \sigma _1^2$

Thus, the variance of the new observations is same as that of the original observations.

Similar Questions

If the variance of the frequency distribution is $160$ , then the value of $\mathrm{c} \in \mathrm{N}$ is

$X$ $c$ $2c$ $3c$ $4c$ $5c$ $6c$
$f$ $2$ $1$ $1$ $1$ $1$ $1$

  • [JEE MAIN 2024]

The mean and the variance of five observations are $4$ and $5.20,$ respectively. If three of the observations are $3, 4$ and $4;$ then the absolute value of the difference of the other two observations, is

  • [JEE MAIN 2019]

If $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)=n$ and $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a,(n, a>1)$ then the standard deviation of $n$ observations $x _{1}, x _{2}, \ldots, x _{ n }$ is

  • [JEE MAIN 2020]

Let $X=\{\mathrm{x} \in \mathrm{N}: 1 \leq \mathrm{x} \leq 17\}$ and $\mathrm{Y}=\{\mathrm{ax}+\mathrm{b}: \mathrm{x} \in \mathrm{X}$ and $\mathrm{a}, \mathrm{b} \in \mathrm{R}, \mathrm{a}>0\} .$ If mean and variance of elements of $Y$ are $17$ and $216$ respectively then $a + b$ is equal to 

  • [JEE MAIN 2020]

If each of given $n$ observations is multiplied by a certain positive number $'k'$, then for new set of observations -