Let $z$ =${i^{2i}}$ , then $|z|$ is (where $i$ =$\sqrt { - 1}$ )

  • A

    $1$

  • B

    ${e^\pi }$

  • C

    ${e^{ - \pi }}$

  • D

    ${e^{\frac{\pi }{2}}}$

Similar Questions

If $\frac{{z - i}}{{z + i}}(z \ne - i)$ is a purely imaginary number, then $z.\bar z$ is equal to

If for $z=\alpha+i \beta,|z+2|=z+4(1+i)$, then $\alpha+\beta$ and $\alpha \beta$ are the roots of the equation

  • [JEE MAIN 2023]

If $z = 1 - \cos \alpha + i\sin \alpha $, then $amp \ z$=

If $\alpha$ and $\beta$ are different complex numbers with $|\beta|=1,$ then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$

Let $z_1$ and $z_2$ be any two non-zero complex numbers such that $3\left| {{z_1}} \right| = 4\left| {{z_2}} \right|$. If $z = \frac{{3{z_1}}}{{2{z_2}}} + \frac{{2{z_2}}}{{3{z_1}}}$ then

  • [JEE MAIN 2019]