પ્રથમ $n $ અયુગ્મ પ્રાકૃતિક સંખ્યાઓનું પ્રમાણિત વિચલન = …….

  • A

    $\sqrt {\frac{{{n^2}\, - \,\,1}}{2}} $

  • B

    $\sqrt {\frac{{{n^2}\, - \,\,1}}{3}} $

  • C

    $\sqrt {\frac{{{n^2}\, - \,\,1}}{6}} $

  • D

    $\sqrt {\frac{{{n^2}\, - \,\,1}}{{12}}} $

Similar Questions

જો $n$ અવલોકનો $x_1, x_2, x_3.........x_n$ ના મધ્યક $\bar x$ અને વિચરણ $\sigma ^2$ હોય, તો સાબિત કરી કે અવલોકનો $a x_{1}, a x_{2}, a x_{3}, \ldots ., a x_{n}$  ના મધ્યક અને વિચરણ અનુક્રમે $a \bar{x}$ અને $a^{2} \sigma^{2}$ છે, $(a \neq 0)$. 

આવૃતી વિતરણ

$\mathrm{x}$ $\mathrm{x}_{1}=2$ $\mathrm{x}_{2}=6$ $\mathrm{x}_{3}=8$ $\mathrm{x}_{4}=9$
$\mathrm{f}$ $4$ $4$ $\alpha$ $\beta$

માં જો મધ્યક અને વિચરણ અનુક્રમે $6$ અને $6.8$ છે. જો $x_{3}$ એ $8$ માંથી $7$ કરવામાં આવે છે તો નવી માહિતીનો મધ્યક મેળવો.

  • [JEE MAIN 2021]

એક ધોરણના $50$ વિદ્યાર્થીઓ દ્વારા ત્રણ વિષયો ગણિત, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્રમાં મેળવેલા ગુણનો મધ્યક અને પ્રમાણિત વિચલન નીચે પ્રમાણે છે :

વિષય

ગણિત  ભૌતિકશાસ્ત્ર

રસાયણશાસ્ત્ર

મધ્યક  $42$ $32$ $40.9$
પ્રમાણિત વિચલન  $12$ $15$ $20$

કયા વિષયમાં સૌથી વધુ ચલન અને કયા વિષયમાં સૌથી ઓછું ચલન છે ? 

$20$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $2$ જણાયા છે. ફરીથી ચકાસતા, એવું માલુમ થાય છે કે એક અવલોકન $12$ ને બદલે ભૂલથી $8$ લેવામાં આવ્યું હતું તો સાચું પ્રમાણિત વિચલન ............ છે.

  • [JEE MAIN 2024]

જો $v_1 =$ $\{13, 1 6, 1 9, . . . . . , 103\}$ નો વિચરણ અને $v_2 =$ $\{20, 26, 32, . . . . . , 200\}$ નો વિચરણ હોય તો $v_1 : v_2$ મેળવો.