જો $z_1$ એ $z\bar{z} = 1$ પર બિંદુ છે અને $z_2$ એ બીજું બિંદુ $(4 -3i)z + (4 + 3i)z -15 = 0$, પર હોય તો $|z_1 -z_2|_{min}$ ની કિમત મેળવો
(જ્યાં $ i = \sqrt { - 1}$ )
$\frac{1}{2}$
$2$
$\frac{3}{2}$
$4$
સંકર સંખ્યાનો માનાંક અને કોણાંક શોધો. $z=-\sqrt{3}+i$
$\left( {\frac{{3 + 2i}}{{3 - 2i}}} \right)$ નો માનાંક મેળવો.
જો $Arg(z)$ એ સંકર સંખ્યા $z$ નો મુખ્ય કોણાક દર્શાવે તો $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ ની કિમત મેળવો
જો $z$ અને $w$ સંકર સંખ્યા છે કે જેથી $|zw| = 1$ અને $arg(z) -arg(w) =\frac {\pi }{2},$ થાય તો .........
$\frac{{{{(2 + i)}^2}}}{{3 + i}}$ ની અનુબદ્ધને $a + ib$ સ્વરૂપમાં દર્શાવો.