જો $Arg(z)$ એ સંકર સંખ્યા $z$ નો મુખ્ય કોણાક દર્શાવે તો $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ ની કિમત મેળવો 

  • A

    $0$

  • B

    $\frac{\pi }{2}$

  • C

    $\pi$

  • D

    $Arg$  $z$

Similar Questions

જો $\mathrm{z}_1$ અને $\mathrm{z}_2$ બે સંકર સંખ્યા માટે $\mathrm{z}_1+\mathrm{z}_2=5$ અને $z_1^3+z_2^3=20+15 i$ છે. તો $\left|z_1^4+z_2^4\right|=$__________. 

  • [JEE MAIN 2024]

જો $z$ શુદ્ધ વાસ્તવિક સંખ્યા છે કે જેથી ${\mathop{\rm Re}\nolimits} (z) < 0$, તો $arg(z)$ = . . .. .

અનુબદ્વ સંકર સંખ્યા જો $\frac{1}{{i - 1}}$ હોય ,તો સંકર સંખ્યા મેળવો.

  • [AIEEE 2008]

જો $z$ એ સંકર સંખ્યા હોય, તો $(\overline {{z^{ - 1}}} )(\overline z ) = $

ધારોકે $z$ એવી સંકર સંખ્યા છે કે જેથી $|z+2|=1$ અને $\operatorname{Im}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$. તો $|\operatorname{Rc}(\overline{z+2})|$ નું મૂલ્ય ............ છે.

  • [JEE MAIN 2024]