If $(1 -x + 2x^2)^n$ = $a_0 + a_1x + a_2x^2+..... a_{2n}x^{2n}$ , $n \in N$ , $x \in R$ and $a_0$ , $a_2$ and $a_1$ are in $A$ . $P$ .,then there exists 

  • A

    exactly two values of $n$

  • B

    exactly one value of $n$

  • C

    exactly three values of $n$

  • D

    no value of $n$

Similar Questions

If $L.M.V.$ theorem is true for $f(x) = x(x-1)(x-2);\, x \in [0,\, 1/2]$ , then $C =$ ?

The value of $c$ in the Lagrange's mean value theorem for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ when $\mathrm{x} \in[0,1]$ is

  • [JEE MAIN 2020]

If the function $f(x) = {x^3} - 6a{x^2} + 5x$ satisfies the conditions of Lagrange's mean value theorem for the interval $[1, 2] $ and the tangent to the curve $y = f(x) $ at $x = {7 \over 4}$ is parallel to the chord that joins the points of intersection of the curve with the ordinates $x = 1$ and $x = 2$. Then the value of $a$ is

For a real number $x$ let $[x]$ denote the largest number less than or equal to $x$. For $x \in R$ let $f(x)=[x] \sin \pi x$. Then,

  • [KVPY 2014]

If Rolle's theorem holds for the function $f(x) = 2{x^3} + b{x^2} + cx,\,x\, \in \,\left[ { - 1,1} \right]$ at the point $x = \frac{1}{2}$ , then $(2b+c)$ is equal to