જો ${\left( {\frac{3}{{{{\left( {84} \right)}^{\frac{1}{3}}}}} + \sqrt 3 \ln \,x} \right)^9},\,x > 0$ માં પ્રથમ $7^{th}$ પદ $729$ હોય તો $x$ ની શકય કિમત મેળવો
$e^2$
$e$
$\frac {e}{2}$
$2e$
${(1 + x)^n}$ ના દ્રીપદી વિતરણમાં દ્રીતીય , તૃતીય અને ચતૃથ પદો સમાંતર શ્રેણીમાં હોય તો $n$ ની કિમંત મેળવો.
જો ${\left( {x + \frac{1}{{{x^2}}}} \right)^{2n}},$ ના વિસ્તરણમાં ${x^m}$ નો સહગુણક મેળવો.
${\left( {x + \frac{2}{{{x^2}}}} \right)^{15}}$ ના વિસ્તરણમાં અચળપદ મેળવો.
$\left(x-\frac{3}{x^{2}}\right)^{m}$ ના વિસ્તરણમાં પ્રથમ ત્રણ પદોના સહગુણકોનો સરવાળો $559$ છે. વિસ્તરણમાં $x^{3}$ હોય તેવું પદ શોધો. $m$ એ પ્રાકૃતિક સંખ્યા છે.
જો $\left(x^{2}+\frac{1}{b x}\right)^{11}$ માં $x^{7}$ નો સહગુણક અને $\left(x-\frac{1}{b x^{2}}\right)^{11}, b \neq 0$ માં $x^{-7}$ સહગુણક સમાન હોય તો $b$ ની કિમંત મેળવો.