નિશ્ચાયકનો ઉપયોગ કરી $(3, 1)$ અને $(9, 3)$ ને જોડતી રેખાનું સમીકરણ શોધો.
$x-3 y=2$
$x-3 y=0$
$x+3 y=0$
$x-3 y=10$
ધારો કે $\omega $ એક એવી સંકર સંખ્યા છે કે જેથી $2\omega + 1 = z$ જયાં $z = \sqrt { - 3} $ . જો $\left| {\begin{array}{*{20}{c}}1&1&1\\1&{ - {\omega ^2} - 1}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^7}}\end{array}} \right| = 3k$ હોય,તો $k$ મેળવો. .
જો રેખાઓ $x + 2ay + a = 0$, $x + 3by + b = 0$ અને $x + 4cy + c = 0$ એ સંગામી હોય તો $a$, $b$ અને $c$ એ . . . . શ્રેણીમાં હોય .
ધારો કે $D = \left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$ અને $D' = \left| {\,\begin{array}{*{20}{c}}{{a_1} + p{b_1}}&{{b_1} + q{c_1}}&{{c_1} + r{a_1}}\\{{a_2} + p{b_2}}&{{b_2} + q{c_2}}&{{c_2} + r{a_2}}\\{{a_3} + p{b_3}}&{{b_3} + q{c_3}}&{{c_3} + r{a_3}}\end{array}\,} \right|$, તો . . .
$\left| {\begin{array}{*{20}{c}}
{\sin \alpha }&{\cos \alpha }&{\sin \left( {\alpha + \gamma } \right)}\\
{\sin \beta }&{\cos \beta }&{\sin \left( {\beta + \gamma } \right)}\\
{\sin \delta }&{\cos \delta }&{\sin \left( {\gamma + \delta } \right)}
\end{array}} \right|$ મેળવો.
સુરેખ સમીકરણ સંહતિ $a x+y+z=1$, $x+a y+z=1, x+y+a z=\beta$ માટે,નીચેના પૈકી કયું વિધાન સાચું નથી?