If $f$ and $g$ are differentiable functions in $[0, 1]$ satisfying $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ and $f\left( 1 \right) = 6,$ then for some $c \in \left] {0,1} \right[$ . .
$f'\left( c \right) = g'\left( c \right)$
$f'\left( c \right) = 2g'\left( c \right)$
$2f'\left( c \right) = g'\left( c \right)$
$2f'\left( c \right) = 3g'\left( c \right)$
If $f:[-5,5] \rightarrow \mathrm{R}$ is a differentiable function and if $f^{\prime}(x)$ does not vanish anywhere, then prove that $f(-5) \neq f(5).$
If from mean value theorem, $f'({x_1}) = {{f(b) - f(a)} \over {b - a}}$, then
For which interval, the function ${{{x^2} - 3x} \over {x - 1}}$ satisfies all the conditions of Rolle's theorem
Verify Mean Value Theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b],$ where $a=1$ and $b=4$
If $f$ is a differentiable function such that $f(2x + 1) = f(1 -2x)$ $\forall \,\,x \in R$ then minimum number of roots of the equation $f'(x) = 0$ in $x \in \left( { - 5,10} \right)$ ,given that $f(2) = f(5) = f(10)$ , is