જો $\left| {\begin{array}{*{20}{c}}{x - 4}&{2x}&{2x}\\{2x}&{x - 4}&{2x}\\{2x}&{2x}&{x - 4}\end{array}} \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2},$ તો ક્રમયુકત જોડ $\left( {A,B} \right) = $. . . . .
$\left( { - 4,3} \right)$
$\left( { - 4,5} \right)$
$\left( {4,5} \right)$
$\left( { - 4, - 5} \right)$
$\left| {\,\begin{array}{*{20}{c}}x&4&{y + z}\\y&4&{z + x}\\z&4&{x + y}\end{array}\,} \right| = $
જો રેખાઓ $2 x-y+3=0,6 x+3 y+1=0$ અને $\alpha x+2 y-2=0$ ત્રિકોણ ન બનાવે તેવી $\alpha$ ની તમામ વાસ્તવિક સંખ્યાઓના વર્ગનો સરવાળો $p$ હોય, તો $p$ અથવા તેનાથી નાનો મહત્તમ પૂણાંક___________ છે.
સમીકરણ $-3 x^4+\operatorname{det}\left[\begin{array}{ccc}1 & x & x^2 \\ 1 & x^2 & x^4 \\ 1 & x^3 & x^6\end{array}\right]=0$ નું સમાધાન કરતી $x$ ની પૂર્ણાંક કિમંતો મેળવો.
$\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $
સુરેખ સમીકરણ સંહતિ $x+y+z=4 \mu, x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$ ધ્યાને લો, જ્યાં $\lambda$, $\mu \in R$. નીચેના વિધાનો પૈકી ક્યું એક સાચું નથી ?