જો $z $ એ એકમ માંનાક અને $\theta $ કોણાંક ધરાવતી સંકર સંખ્યા હોય,તો ${\rm{arg}}\left( {\frac{{1 + z}}{{1 + \bar {\; z\;}}}} \right)$ મેળવો.

  • [JEE MAIN 2013]
  • A

    $ - \theta $

  • B

    $\frac{\pi }{2} - \theta $

  • C

    $\;\theta $

  • D

    $\;\pi - \theta $

Similar Questions

જો $z = x + iy\, (x, y \in R,\, x \neq \, -1/2)$ , હોય તો $z$ ની કેટલી કિમતો માટે ${\left| z \right|^n}\, = \,{z^2}{\left| z \right|^{n - 2}}\, + \,z{\left| z \right|^{n - 2}}\, + \,1\,.\,\left( {n \in N,n > 1} \right)$ થાય 

જો $|{z_1}|\, = \,|{z_2}|$ અને $amp\,{z_1} + amp\,\,{z_2} = 0$, તો

જો $|z - 25i| \le 15$, તો $|\max .amp(z) - \min .amp(z)| = $

$a \in C$ માટે,ધારોકે  $A =\{z \in C: \operatorname{Re}( a +\overline{ z }) > \operatorname{Im}(\bar{a}+z)\}$ અને $B=\{z \in C: \operatorname{Re}(a+\bar{z}) < \operatorname{Im}(\bar{a}+z)\}$.તો આપેલા બે વિધાનો 

$(S1)$ : જો $\operatorname{Re}(a), \operatorname{Im}(a) > 0$, હોય તો ગણ $A$ તમામ વાસ્તવિક સંખ્યાઆ સમાવે છે, અને

$(S2)$ : જો $\operatorname{Re}(a), \operatorname{Im}(a) < 0$, હોય તો ગણ $B$ તમામ વાસ્તવિક સંખ્યાઓ સમાવે છે.

  • [JEE MAIN 2023]

જો ${z_1}$ અને ${z_2}$ એ બે સંકર સંખ્યા હોય ${z_1} \ne {z_2}$ અને $|{z_1}|\, = \,|{z_2}|$ છે. જો ${z_1}$ ને ધન વાસ્તવિક ભાગ છે અને ${z_2}$ ઋણ કાલ્પનિક ભાગ છે ,તો $\frac{{({z_1} + {z_2})}}{{({z_1} - {z_2})}}$ એ  . . .  થાય. 

  • [IIT 1986]